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LETTER TO THE EDITOR

Are critical finite-size scaling functions calculable from
knowledge of an appropriate critical exponent?

R Hilferf{ and N B Wilding}

1 Institut fiic Physik, Universitdt Mainz, 55099 Mainz, Germany
1 International School for Advanced Studies, Via Beirut 2-4, 34013 Trieste, Italy

Received 6 December 1994 ‘ .

Abstract. Critical finite-size scaling functions for the order-parameter distribution of the two-
and three-dimensional Ising model are investigated. 'Within a recently introduced classification
theory of phase transitions the universal part of critical finite-size scaling functions has been
derived by employing a scaling limit which differs from the traditional finite-size scaling limit. In
this paper the anatytical predictions are compared with Monte Carlo simulation results. We find
good agreement between the analytical expression and the simulation results. The agreement is
consistent with the possibility that the functional form of the critical finite-size scaling fanction
for the order-parameter distribution is determined uniquely by only a few universal parameters,
most notably the equation of state exponent.

A universality class in the theory of critical phenomena is identified by a set of critical
exponents and a set of universal scaling functions [1-3]. In practice finite-size scaling
functions and their associated universal amplitudes or amplitude ratios have become an
indispensable tool for the extraction of universal behaviour from numerical simulations of
finite systems throughout many fields of physics [4-8], and the subject remains of vigorous
research interest [9-12]. It is therefore of broad interest to obtain exact information on finite-
size scaling functions. Such knowledge would also be particularly important for discerning
corrections to scaling behaviour.

Most determinations of critical finite-size scaling functions or amplitude ratios have been
carried out by numerical simulation of critical systems [3, 13-21]. Analytical calculations
[22-25] are complicated because at criticality the influence of boundary conditions cannot
be neglected. This renders renormalization-group methods difficult to implement. The
problem of hyperscaling violations [26,27] has further obscured the basic question as to
what extent finite-size scaling functions are universal or not. Recently [28], however, finite-
size scaling theory has been reanalysed from the perspective of a general classification
theory for phase transitions {29-33]. In these papers it was shown that phase transitions in
statistical mechanics may be classified according to a generalized classification theory. This
theory classifies each transition according to its generalized order in analogy with Ehrenfest’s
classification scheme. The objective of the present letter is to compare analytical predictions
of the generalized classification scheme with computer simulation results. The comparison
is camried out for the critical finite-size scaling fanction of the order-parameter distribution
in the two- and three-dimensional Ising models with periodic boundary conditions. Good
agreement between simulations and the theoretical predictions is found over the entire range
for which numerical data are available.
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Define p(¥, L,£) to be the probability density function for the fluctuating order
parameter V¥ in a finite system of size L and order-parameter correlation length &§. Then
the scaling function of interest p(x, ¥) is defined by

pg, L, &) = LAG—80 -8 Fypp He=dD@=dY 1 pey (1)

where dy is the anomalous or scaling dimension of the order parameter, d* is Fisher’s
anomalous dimension of the vacuum {34], and &, is Binder’s thermodynamic length [35].
If hyperscaling holds then d* = 0, the thermodynamic length becomes the correlation
length, £ = £, and the exponent in (1) reduces to the familiar form dy = 8/v where 8 is
the order-parameter exponent and v the correlation length exponent. The scaling function
p(x, ) is expected to be universal up to the choice of boundary conditions [13].

Given the scaling ansatz (1) the traditional scaling analysis [13, 25] of the critical scaling
function p(x, 0) distinguishes two cases.

(i) For x < 1 the scaling function is expected to have the universal Landau—Ginzburg
form [13]

P(x,0) o exp(—Ap — Agx® — Agx® — ..}, (2)

(ii) For x 3 1 and ground-state boundary conditions (e.g. all spins positive for the Ising
model) the scaling function is expected to have the squeezed exponential form [36]

Plx, 0) o exp(—Ax**) 3)

where § denotes the equation of state exponent. Based on scaling arguments the same form
is expected to apply for periodic boundary conditions [25].

Little exact information is available for F(x,0). To the best of our knowledge only
the cumulant ratio g(0) = (f |x[*5(x, 0)dx)/(f |x|*P(x, 0) dx)? for the two-dimensional
Ising model with singular periodic boundary conditions has been calculated exactly [24].
For non-critical systems on the other hand the analogous non-critical scaling function is
Gaussian by virtue of the central limit theorem [13]. The absence of exact information
about the critical function p(x, 0) even for the otherwise exactly solvable two-dimensional
Ising model is related to the absence of its solution in non-zero magnetic field [36].

Recently the universal part of critical finite-size scaling functions has been related to
finite ensemble scaling functions [33,28]. Finite ensemble scaling functions arise in the
ensemble limit while finite-size scaling functions arise in the finite-size scaling limit. For a
d-dimensional discretized lattice system in the fully finite hypercubic geometry the finite-
size scaling limit is defined as the limit . % in which the box dimension L and the

Lik=e
correlation Jength & increase to infinity in such a way that their ratio remains constant. In
the ensemble limit on the other hand the lattice constant a approaches 0 simultaneously.
More precisely, the ensemble limit is defined as the limit w3 in which M = (£ /a)? and

N = (L/£)¢ approach infinity such that thejr ratio remains constant.

In the finite-size scaling limit the critical finite-size scaling functions are found to contain
a universal as well as a non-universal part. The universal part is given by the finite ensemble
scaling functions which arise in the finite ensemble limit and for which analytical expressions
can be derived if the scaling dimension of the critical operator in question is known. For a
critical operator X at the critical point of a d-dimensional system with Ising symmetry and
periodic boundary conditions the universal part of the critical finite-size scaling function is
written as [28]

B(x, 00 = Lht(x; me) + LA~ (x; o) @
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with . )
wy = min(2, 2 — ay) )

where oy is the thermodynamic fluctuation exponent [34] of the observable X. If X
represents the energy density then og = w, the specific heat exponent, while for the order-
parameter density oy = 1 — (1/8) where & is the equation of state exponent. The scaling
functions h*(x; @x) obey ht(x) = h~(—x) and can be written in terms of the H-function
representation of stable probability densities [37, 38, 39] as

(1 = Vo, 1/zy)
(O,Xi) ¥ ) - (6)

The general class of H -functmns is usually defined in terms of Mellin-Barnes contour
integrals and contains Meijer’s G-function as well as many other generalized hypergeometric
functions as special cases. For a precise definition we refer the reader to standard tables
[38]. Note that (6) depends on only @y which is completely determined by the scaling
dimension of X. Note also that (4) and (6) apply for periodic boundary conditions. The
general theory identifies a universal shape and symmetry parameter which is related to
different choices of boundary conditions [28]. It was identified in [28] to be unity for
periodic boundary conditions and the same choice has been applied here. In the following
we focus on order-parameter fiuctuations, i.e. X = W. In that case the index wy becomes
oy = 1 + (1/8) where § is the equation of state exponent.

The scaling function given by (4) and (6) are consistent with the scaling results (2) and
(3). The functions A*(x; wy) are entire functions of x, and thus F(x, 0) may be expanded
around x = 0 as assumed in (2). Secondly the asymptotic expansion of the H-functions

h(x; wy) = -1—H (

f40] gives
1/ sx V¥
AE(x; my) x x9V72 exp [—— (8 " 1) )
which is consistent with the scaling result (3} even though it is not derived in the same
scaling limit{.

In figure 1{a) we compare the analytical result to simulation data for the two-dimensional
Ising model with periodic boundary conditions. In this case § = 15 and the critical
temperature is known exactly. The simulation resulis are represented as crosses, the
analytical result as a full curve. The crosses give a smoothed representation of scaled
simulation data [19] for system size L = 64. All distributions are scaled to unit norm and
variance. For the analytical curve this requires a cut-off which was chosen at a value close
to the largest simulation data point.

In figure 1(%) the same comparison is shown for the case of the d = 3 Ising model.
In this case neither the critical temperature nor the equation of state exponent & are known
exactly. The data points represent original high-precision Monte Carlo simulations in which
systems of size L = 20 and L = 32 were studied for 50 x 10° Monte Carlo sweeps each
using a vectorized code on a Cray YMP. The data for the system size L = 20 are represented
by crosses, that for L = 32 by circles. We used the estimates [20] J/(kgT,) = 0.221 6595
for the critical temperature and § = 4.8 for the equation of state exponent. Here J denotes
the Ising exchange coupling and kp is Boltzmann’s constant.

The agreement between the analytical prediction and the simulation results in both two
and three dimensions is gratifying. We attribute the small discrepancies, in part at least, to

1 Note, however, that the asymptotic result (7) for k% (x) is valid only for x — £oo while for ¥ — oo one hag
R (x) oc x~2- (%) This is related 1o the deviations in the tails between the simulations and the analytical result,
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Figure 1. Comparison of the analytical predictions of (4}-{6} with Monte Carlo simulation
data for the magnetization distribution of the two- and three-dimensional critical Ising maodel
with periodic boundary conditions. In (a) the 2b data of [19] (¢crosses} is compared with the
analytical prediction for & = 15 (full curve). Pam (&) shows original 3D simulation data for
L =20 (¢rosses) and L = 30 (circles), collected at temperature J/(kpT;) = 0.2216525, The
corresponding analytical cerve corresponds to the estimate § = 4.8 [20]. All data have been
scaled to unit norm and variance and statistical errors do not exceed the symbol sizes.

the low statistics in the tails of the scaling function. This view is supported by comparing
the scaling function obtained in a previous small-scale study of the 3D Ising model [13],
with that of figure 1(5). While both the scaling functions of [13] and those reported here
exhibit excellent data collapse, the scaling functions in both cases are markedly different,
demonstrating the presence of the non-universal part [28]. The good agreement between
theory and simulations lends substantial support to the theoretical ideas from which the
scaling functions derive. In particular, it should be emphasized that the only difference
between the full curves in figures 1(a) and (b) is the value of §. This suggests that the full
Junctional form of the universal part of the critical finite-size scaling function of the order-
parameter distribution could in simple cases be determined by a few universal parameters,
most notably the equation of state exponent. Further numerical and analytical studies are,
however, required to conclusively establish whether the proposed universal scaling functions
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agree fortuitously with the Monte Carlo data or are more generally correct.

The authors are grateful to A D Bruce for comments and making available the resulis
of Monte Carlo studies on the two-dimensional Ising model. One of us (RH) thanks the
Commission of the European Communities (ERBCHBGCT920180) for financial support.
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