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LETTER TO THE EDITOR 

Are critical finite-size scaling functions calculable from 
knowledge of an appropriate critical exponent? 

R HilfertT and N B Wildingi 
t Institut fiir Physik. UniversitSl Mainz, 55099 Mainz, Germany 
1 Intematiod School for Advanced Studies, Via Beirut 24,34013 Trieste, Italy 

Received 6 December 1994 

Abstract. Critical finite-size scaling functions for the order-parameter disuibution of the WO- 

and three-dimensional king model are investigated. Within a recently introduced ckification 
theory of phase transitions &e universal part of critical finite-size scaling functions has been 
derived by employing a scaling Limit which differs from the traditional fiNWsize scaling limit. In 
this paper the analytical predictions are w m p d  with Monte Carlo simulation resulu. We find 
good agreement between the analyiical expression and the simulation results. The agreement is 
consistent with the possibility that the functional form of the critical finite-size scaling function 
for the order-parameter dislribution is determined uniquely by only a few u n i v d  " n e t e n .  
most notably the equation of state exponent. 

A universality class in the theory of critical phenomena is identified by a set of critical 
exponents and a set of universal scaling functions [l-31. In practice finite-size scaling 
functions and their associated universal amplitudes or amplitude ratios have become an 
indispensable tool for the extraction of universal behaviour from numerical simdations of 
finite systems throughout many fields of physics [4-81, and the subject remains of vigorous 
research interest [9-12.1. It is therefore of broad interest to obtain exact information on finite- 
size scaling functions. Such knowledge would also be particularly important for discerning 
corrections to scaling behaviour. 

Most determinations of critical finite-size scaling functions or amplitude ratios have been 
carried out by numerical simulation of critical systems [3,13-211. Analytical calculations 
[22-25] are complicated because at criticality the influence of boundary conditions cannot 
be neglected. This renders renormalization-group methods difficult to implement. The 
problem of hyperscaling violations [26,27] has further obscured the basic question as to 
what extent finite-size scaling functions are universal or not. Recently [28], however, finite- 
size scaling theory has been reanalysed from the perspective of a general classification 
theory for phase transitions [29-331. In these papers it was shown that phase transitions in 
statistical mechanics may be classified according to a generalized classification theory. This 
theory classifies each transition according to its generalized order in analogy 'with Ehrenfest's 
classification scheme. The objective of the present letter is to compare analytical predictions 
of the generalized classification scheme with computer simulation results. The comparison 
is carried out for the critical finite-size scaling function of the order-parameter distribution 
in the two- and three-dimensional king models with periodic boundary conditions. Good 
agreement between simulations and the theoretical predictions is found over the entire range 
for which numerical data are available. 
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Define p(@, L .  {) to be the probability density function for the fluctuating order 
parameter Y in a finite system of size L and order-parameter correlation length f .  Then 
the scaling function of interest P(x, y )  is defined by 

(1) d(d*-d*)/(d-d*) F($Ld(dv-G)/(d-d’),  ~ / f ~ . )  P W ,  L.  0 = L 
where d* is the anomalous or scaling dimension of the order parameter, d’ is Fisher’s 
anomalous dimension of the vacuum 1341, and fd .  is Binder’s thermodynamic length [35]. 
If hyperscaling holds then d* = 0, the thermodynamic length becomes the correlation 
length, 50 = f 3  and the exponent in (1) reduces to the familiar form dq = @ / v  where @ is 
the order-parameter exponent and v the correlation length exponent. The scaling function 
F(x,  y) is expected to be universal up to the choice of boundary conditions [13]. 

Given the scaling ansatz (1) the traditional scaling analysis [13,25] of the critical scaling 
function F ( x ,  0) distinguishes two cases. 

(i) For x < 1 the scaling function is expected to have the universal Landau-Ginzburg 
form [13] 

(2) F ( x ,  0) (Y exp(-Ao - A& - A4x4 - . . .) . 
(ii) For x >> 1 and ground-state boundary conditions (e.g. all spins positive for the king 

model) the scaling function is expected to have the squeezed exponential form [36] 

F(x ,  0) (Y exp(-Ax’+’) (3) 

where 6 denotes the equation of state exponent. Based on scaling arguments the same form 
is expected to apply for periodic boundary conditions [25]. 

Little exact information is available for ?(x, 0). To the best of OUT knowledge only 
the cumulant ratio g(0) = ( J  1xI4F(x, O)dx)/(J 1xI2F(x, O)CLT)~ for the two-dimensional 
Ising model with singular periodic boundary conditions has been calculated exactly 1241. 
For non-critical systems on the other hand the analogous non-critical scaling function is 
Gaussian by virtue of the central limit theorem [131. The absence of exact information 
about the critical function g(x, 0) even for the otherwise exactly solvable two-dimensional 
Ising model is related to the absence of its solution in non-zero magnetic field [36]. 

Recently the universal part of critical finitesize scaling functions has been related to 
finite ensemble scaling functions [33,28]. Finite ensemble scaling functions arise in the 
ensemble limit while finite-size scaling functions arise in the finite-size scaling limit. For a 
d-dimensional discretized lattice system in the fully finite bypercubic geometry the finite- 
size scaling limit is defined as the limit L,!& in which the box dimension L and the 
correlation length f increase to infinity in such a way that their ratio remains constant. In 
the ensemble limit on the other hand the lattice constant a approaches 0 simultaneously. 
More precisely, the ensemble limit is defined as the limit ~,!k in which M = ( f / ~ ) ~  and 
N = (L /5 )d  approach infinity such that their ratio remains constant. 

In the finite-size scaling limit the critical finitesize scaling functions are found to contain 
a universal as well as a non-universal part. The universal part is given by the finite ensemble 
scaling functions which arise in the finite ensemble limit and for which analytical expressions 
can be derived if the scaling dimension of the critical operator in question is known. For a 
critical operator X at the critical point of a d-dimensional system with Ising symmetry and 
periodic boundary conditions the universal part of the critical finite-size scaling function is 
written as [28] 

(4) 

L I P C  

W/M-c 

- p ( x ,  0)  = ih+(x ;  mx) + ih-(x;  mx) 
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with 

mx = min(2.2 - WX) (5) 
where ax is the thermodynamic fluctuation exponent [34] of the observable X. If X 
represents the energy density then WE = a, the specific heat exponent, while for the order- 
parameter density W* = 1 - (1/S) where S is the equation of state exponent. The scaling 
functions h*(x; mx) obey h+(x) = h-(-x) and can be written in terms of the H-function 
representation of stable probability densities 137, 38, 391 as 

The general class of H-functions is usually defined in terms of Mellin-Bames contour 
integrals and contains Meijer's G-function as well as many other generalized hypergeometric 
functions as special cases. For a precise definition we refer the reader to standard tables 
[38]. Note that (6) depends on only mx which is completely determined by the scaling 
dimension of X. Note also that (4) and (6) apply for periodic boundary conditions. The 
general theory identifies a universal shape and symmetry parameter which is related to 
different choices of boundary conditions [28]. It was identified in [28] to be unity for 
periodic boundary conditions and the same choice has been applied here. In the following 
we focus on order-parameter fluctuations, i.e. X = Y. In that case the index mx becomes 
m* = 1 + (1/S) where S is the equation of state exponent. 

The scaling function given by (4) and (6) are consistent with the scaling results (2) and 
(3). The functions h*(x; mx) are entire functions of x ,  and thus P(x, 0) may be expanded 
around x = 0 as assumed in (2). Secondly the asymptotic expansion of the H-functions 
[401 gives 

which is consistent with the scaling result (3) even though it is not derived in the same 

In figure l(u) we compare the analytical result to simulation data for the two-dimensional 
king model with periodic boundary conditions. In this case S = 15 and the critical 
temperature is known exactly. The simulation results are represented as crosses, the 
analytical result as a full curve. The crosses give a smoothed representation of scaled 
simulation data [19] for system size L = 64. All distributions are scaled to unit norm and 
variance. For the analytical curve this requires a cut-off which was chosen at a value close 
to the largest simulation data point. 

In figure l(b) the same comparison is shown for the case of the d = 3 king model. 
In this case neither the critical temperature nor the equation of state exponent S are known 
exactly. The data points represent original high-precision Monte Carlo simulations in which 
systems of size L = 20 and L = 32 were studied for 50 x lo6 Monte Carlo sweeps each 
using a vectorized code on a Cray YMP. The data for the system size L = 20 are represented 
by crosses, that for L = 32 by circles. We used the estimates [ZO] J/(ksTC) = 0.221 6595 
for the critical tempemhue and 8 = 4.8 for the equation of state exponent. Here J denotes 
the king exchange coupling and ks is Boltzmann's constant. 

The agreement between the analytical prediction and the simulation results in both two 
and three dimensions is gratifying. We attribute the small discrepancies, in part at least, to 

t Note, however, that the qmptotic result (7) for k*(x) is valid only for x + &m while for x --t Fm one has 
k*(x) c( x-2-(1/o. This is related to the deviations io the tails buween the simulations and the analytical resuIt. 

scaling l i i t i .  
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1.5 

0.5.  

x q l L p m  

Fmre 1. Comparison of the analytical predictions of (4H6) with Monte Carlo simulation 
data for the magnetization distribution of the WO- and thee-dimensional critical Ising model 
with periodic baunda~~  conditions. In (0) the 2~ data of [I91 (crosses) is compared with the 
analytical prediction for 6 = 15 (full curve). Pan (b) shows original 3D simulation data for 
L = 20 (crosses) and L = 30 (circles). collected at temperature Jf(ksT,) = 0.221 6595. The 
corresponding analytical cwe corresponds to the estimate 6 = 4.8 [ZO]. All data have been 
scaled to unit norm and variance and statistical errors do not exceed the symbol sizes. 

the low statistics in the tails of the scaling function. This view is supported by comparing 
the scaling function ob&ed in a previous small-scale study of the 3D king model [13], 
with that of figure I@). While both the scaling functions of [13] and those reported here 
exhibit excellent data collapse, the scaling functions in both cases are markedly different, 
demonstrating the presence of the non-universal part [28]. The good agreement between 
theory and simulations lends substantial support to the theoretical ideas from which the 
scaling functions derive. In paticular, it should be emphasized that the only difference 
between the full curves in figures I@) and (b)  is the value of S. This suggests that the full 
funcrionalform of the universal part of the critical finite-sue scaling function of the order- 
parameter distribution could in simple cases be determined by a few universal parameters, 
most notably the equation of state exponent. Further numerical and analytical studies are, 
however, required to conclusively establish whether the proposed universal scaling functions 
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agree fortuitously with the Monte Carlo data ,or are more generally correct. 

The authors are grateful to A D Bruce for comments and making available the results 
of Monte Carlo studies on the two-dimensional Ising model. One of us (RH) thanks the 
Commission of the European Communities (ERBCHBGCT920180) for financial support. 
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